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The J1-J2 square lattice Heisenberg model with spin S=1 /2 has exchange bonds both along sides �J1� and
along diagonals �J2� of the square. It exhibits three phases with long-range magnetic order and two unconven-
tionally ordered phases depending on the ratio J2 /J1 of exchange constants. It describes a number of recently
found layered vanadium oxide compounds. A simple means of investigating the ground state is the study of the
magnetization curve and high field susceptibility. We discuss these quantities by using the second-order spin-
wave theory and the exact diagonalization in the whole J1-J2 plane. We compare both results and find good
overall agreement in the sectors of the phase diagram with magnetic order. Close to the disordered regions, the
magnetization curve shows strong deviations from the classical linear behavior caused by large quantum
fluctuations, and the spin-wave approximation breaks down. On the ferromagnet side �J1�0�, where one
approaches the quantum gapless spin nematic ground state, this region is surprisingly large. This result is of
great interest for the vanadium oxide compounds, which are found to lie in this region. We also investigate the
effect of the interlayer coupling and find that the quasi-two-dimensional picture remains valid up to �J� /J1�
�0.3.
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I. INTRODUCTION

The search for a quantum spin liquid—an insulating mag-
net with a gapless ground state which breaks neither lattice
nor spin symmetries—has focused largely on spin-1/2 two-
dimensional quantum antiferromagnets �2DQAFs�. In prac-
tice, however, most two-dimensional antiferromagnet �AF�
spin-1/2 Heisenberg models exhibit either Néel order or crys-
tals of short-ranged singlet bonds and a finite gap to spin
excitations.1 In a few cases, gapless hidden order states with
nematic character arise,2 but among “realistic” models, pos-
sibly only the S=1 /2 Heisenberg model on a Kagomé lattice
remains a serious candidate for a spin-liquid description �see,
e.g., Ref. 3 and references therein�.

Perhaps the best studied example of a 2DQAF is the spin-
1/2 J1-J2 Heisenberg model, which demonstrates a quantum
phase transition from Néel to valence bond solid as a func-
tion of the control parameter J2 /J1.1 A number of layered
vanadium compounds recently synthesized are well de-
scribed by this model. They are of the type Li2VOXO4 �X
=Si,Ge�4–6 and AA�VO�PO4�2 �A ,A�=Pb,Zn,Sr,Ba�,7–9

consisting of vanadium oxide pyramid layers containing V4+

ions with spin S=1 /2.
In Refs. 10 and 11, an extensive analysis of the J1-J2

model, also for a finite magnetic field, has been given in
order to understand the physical properties of the above com-
pounds. Both the numerically exact diagonalization �ED�
Lanczos method for finite clusters and the analytical spin-
wave analysis have been employed. The behavior of the satu-
ration field as a function of the frustration angle has been
studied as a further means of diagnosis of J1-J2 compounds.
It was found that close to the disordered regime with J1�0,
the behavior of the saturation field is determined by an in-
stability of two spin excitations, indicating indeed that, in
this regime, the ground state may be of a spin-nematic

type.12 This leads us to expect that the magnetization itself
should also be anomalous in this regime, with a large effect
from quantum fluctuations. So far, quantum corrections to
the magnetization curve in the spin-wave theory have only
been considered for the nonfrustrated square lattice antifer-
romagnet �J2=0�.13

In this work, we give a systematic investigation of the
magnetization and the high field susceptibility for the general
two-dimensional �2D� square lattice J1-J2 model. Our goal is
to investigate how the quantum corrections on these quanti-
ties depend on the degree of frustration, especially close to
the disordered phases. Our main interest is to establish a
clear connection between the nonclassical anomalies in the
magnetization and the frustration control parameter J2 /J1.
This should be useful information for further investigations
of the vanadium compounds introduced above. The effect of
interplane coupling will be also considered.

The low scale of exchange interactions, which are of or-
der 10 K in the Li2VOXO4 and AA�VO�PO4�2 vanadates,
means that magnetization measurements are relatively easy
to perform. It is therefore hoped that the analysis with the
theory developed here gives an additional criterion to deter-
mine the frustration ratio J2 /J1 in a specific compound. In
Sec. II, we briefly introduce the model. Its high field proper-
ties such as magnetization and susceptibility are investigated
in Sec. III. They are obtained from ED Lanczos calculations
as well as from first- and second-order spin-wave theories,
and a comparison is given. We also evaluate the contribu-
tions of interlayer coupling in Sec. IV, and finally in Sec. V,
we give a discussion and conclusion.

II. J1-J2 MODEL AND ITS PHASES

The 2D square-lattice spin-1/2 Heisenberg model in an
external magnetic field H is given by
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H = J1�
�ij�1

Si · S j + J2�
�ij�2

Si · S j − h�
i

Si
z, �1�

where J1 and J2 are the two exchange constants between the
first and second neighbors on a square lattice, respectively.
As in Refs. 10 and 11, the exchange parameters are defined
per exchange bond. Furthermore, we use the convention h
=g�BH �g�B=gyromagnetic ratio, �B=Bohr magneton�.
The phases in zero field are best characterized by introducing
equivalent parameters

Jc = �J1
2 + J2

2�1/2, � = tan−1�J2/J1� , �2�

or j=tan �=J2 /J1. The angle � determines the extent of
magnetic frustration in the model.

Three classical magnetic ground states are possible de-
pending on �, namely, ferromagnet �FM�, Néel antiferro-
magnet �NAF�, and collinear antiferromagnet �CAF�. They
have been extensively discussed in Ref. 10. The effect of
exchange frustration leading to enhanced quantum fluctua-
tions is strongest at the classical phase boundaries where the
CAF phase joins the NAF or FM phase �see insets of Fig. 1�.
In fact, in these regions they are believed to destroy long-
range magnetic order and establish two additional partially
ordered states, namely, a columnar-dimer state with a spin
gap at CAF/NAF boundary14–18 and a gapless spin-nematic
state at the CAF/FM boundary.12 It can already be seen
within a spin-wave approximation that the magnetic order
breaks down in this regime since the sublattice moment re-
duction due to quantum fluctuations diverges close to the two
boundary regions.10

III. HIGH FIELD PROPERTIES OF THE J1-J2 MODEL

The determination of the frustration ratio J2 /J1 or angle
�=tan−1�J2 /J1� is of foremost importance to characterize a
given square-lattice magnetic compound such as the SiO4
and PO4 vanadates mentioned in the Introduction. The avail-
able experimental methods to reach this objective have been
extensively discussed in Ref. 10. However, the thermody-
namic zero-field methods such as evaluating the heat capac-
ity and the magnetic susceptibility are too ambiguous to be
able to locate � in the NAF or CAF sector of the phase
diagram. Additional information may be obtained from in-
vestigating high field properties,11 for example, from satura-
tion fields as, e.g., determined from the magnetocaloric ef-
fect.

The analysis of the high field magnetization itself as a
function of frustration angle � is also promising. From the
simple nearest neighbor Heisenberg AF �J2=0 or �=0�, it is
known from analytical work13 that deviations from the clas-
sical linear magnetization curve due to quantum fluctuations
are to be expected. This is also concluded from numerical
calculations.19 A systematic study of magnetization curves
for the J1-J2 model is, however, lacking. Since the method is
of experimental importance due to its relative simplicity, we
consider it worthwhile to investigate this problem in detail
for the antiferromagnetic phases of the J1-J2 model. For this
purpose, we will use both analytical spin-wave methods
similar to Ref. 13 and numerical Lanczos methods for exact

diagonalization of finite clusters. Our notation will be close
to the one used in Ref. 11.

A. Magnetization from numerical (T=0) Lanczos results for
J1-J2 clusters

We have numerically diagonalized the Hamiltonian of the
J1-J2 model for cluster sizes of 16, 20, and 24 sites, applying
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FIG. 1. The normalized magnetization obtained from the
Bonner–Fisher construction as a function of an applied magnetic
field H in units of the saturation field Hsat for different frustration
angles �for J1�0 Hsat=hs / �g�B�	. Data from the 24-site cluster are
denoted by circles, 20-site data by diamonds, and 16-site data by
squares. Additionally, the zero-temperature magnetization steps are
plotted for the 24-site clusters; the solid line corresponds to the
solid symbols, the dashed line to the open symbols. The insets in
the plots show the positions of the frustration angles � /� in the
classical phase diagram. The frustration angle is counted positive
above �0�� /��1� and negative below �−1�� /��0� the x axis
in the inset diagram. For reference, the classical magnetization
curve is plotted as a dotted line in both plots. �a� Classically ordered
phases: Néel phase �NAF�, �=−0.21� �solid symbols�, and collin-
ear phase �CAF�, �=0.75� �open symbols�. �b� Disordered re-
gimes: Columnar-dimer phase �crossover from NAF to CAF�, �
=0.17� �solid symbols�, and spin-nematic phase �crossover from
CAF to FM�, �=0.84� �open symbols�.
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the finite-temperature Lanczos method as described in Ref.
11 and references cited therein. In the limit T→0, our results
are identical to the standard zero-temperature implementa-
tion of the algorithm, i.e., the evaluation of the partition
function reduces to the determination of ground-state expec-
tation values. The 16- and 20-site clusters are �regular and
tilted� squares, and the 24-site cluster is a rectangle. All three
clusters tile the infinite lattice such that, with periodic bound-
ary conditions, compatibility with the three classically or-
dered ground states is preserved.

The zero-temperature field dependence of the magnetiza-
tion m= �Sz� has been calculated for the whole phase dia-
gram, except for the FM region, where the saturation field hs
vanishes. Following Ref. 20, Fig. 1 shows the normalized
magnetization m /msat �msat
S� for selected values of the
frustration angle � in the classically ordered antiferromag-
netic phases and in the two disordered regimes of the phase
diagram. The magnetic field is normalized to the saturation
field determined by exact diagonalization. This is identical to
the classical saturation field for positive �antiferromagnetic�
J1. For negative �ferromagnetic� J1, a �S=2 two-magnon
instability determines the saturation field for the finite-size
systems considered here, which occurs at slightly higher field
values than those for the one-magnon instability.11

The field dependence of the magnetization at T=0 for a
finite-size system is a sequence of finite steps. The solid line
in the left panel of Fig. 1 shows the magnetization curve of
the 24-site cluster for �=−0.21�, which is in the Néel phase.
The dashed line shows the same for �=0.75� in the collin-
ear phase. In the right panel, the solid line shows the field
dependence for � /�=0.17 �columnar-dimer phase�; the
dashed line for � /�=0.84 �spin-nematic phase�. The sym-
bols in the plots denote the midpoints of the horizontal and
vertical line segments of the magnetization steps: circles la-
bel the 24-site data, diamonds the 20-site data, and squares
the 16-site data. �For the smaller cluster sizes, the step func-
tions are not shown.� Note that due to the �S=2 steps in the
magnetization for ��� /2 �ferromagnetic J1�, there exist
only one-half as many data points as those for ��� /2. Ac-
cording to Bonner and Fisher,20 these midpoints should yield,
at least for J2=0, a good approximation of the magnetization
curve of the square lattice Heisenberg model in the thermo-
dynamic limit.

The angles � /�=−0.21 and 0.75 for the NAF and CAF in
the left plot of Fig. 1 are chosen such that they correspond
to the experimental findings for the compound
SrZnVO�PO4�2.10 For these values, the midpoints of the
magnetization steps form a smooth function. This can gener-
ally be observed for any frustration angle located inside the
magnetically ordered regimes, be it NAF or CAF. In contrast,
for � /�=0.17 �solid symbols and line in the right plot of
Fig. 1� and � /�=0.85 �open symbols and dashed line�, the
data points scatter much more and do not give rise to a
smooth field dependence. Furthermore, in the columnar-
dimer phase �� /�=0.17�, the well-established half-
magnetization plateau appears at m= 1

2msat.
21,22 The data in

the right panel of Fig. 1 indicate the possibility of yet another
plateau at m= 1

4msat, though a careful examination of finite-
size effects is necessary to make a final conclusion.

In the whole phase diagram, quantum effects lead to nega-
tive corrections: the exact magnetization curve m�h� always

lies below the corresponding classical value, which is a con-
sequence of the lowering of the ground-state energy of a
quantum antiferromagnet compared to its classical
counterpart.13

B. Spin-wave excitations in an external magnetic field

A standard Holstein–Primakoff approximation of Eq. �1�
and a subsequent Bogoliubov transformation lead to the har-
monic spin-wave Hamiltonian11

H = NE0 + NEzp + �
�k

��k�h�	�k
† 	�k, �3�

where 	�k
† are magnon operators that obey bosonic commu-

tation rules. The ��k�h� denote the spin-wave dispersion of
branch �=
 as defined in the appropriate NAF or CAF mag-
netic Brillouin zone �BZ�. It is given by

�
k�h� = ��Ak�h� 
 Ck�h�	2 − Bk�h�2. �4�

Here, Ak�h� is the intrasublattice and Bk�h�, Ck�h� are the
intersublattice couplings given below. The ground-state en-
ergy is composed of a classical part �E0� obtained from the
mean field approximation to Eq. �1� and a part due to zero
point fluctuations of spins �Ezp�. The former is given by

E0 = − h�S�� + a��S��2 − a��S��2, �5�

where �S��=S cos
�c

2 , �S��=S sin
�c

2 , and �c /2 is the classical
field induced canting angle of AF moments counted from the
z axis, which is chosen parallel to the applied field h �here
�
z and �
x ,y�. The coefficients in Eq. �5� are given by

a� =
z

2
�J1 + J2� ,

a� =
z

2
�J1 − J2� �NAF� ,

a� =
z

2
J2 �CAF� , �6�

where z=4 is the coordination number. The classical canting
angle �c /2 of moments is obtained by minimizing E0, which
leads to

cos
�c

2
=

h

hs
, hs = 2S�a� + a�� , �7�

where hs is the classical saturation field. For h�hs, the mo-
ments are fully polarized, i.e., all are ferromagnetically
aligned parallel to h. Explicitly, we have hs=2zSJ1 �NAF�
and hs=zS�J1+2J2� �CAF�.

The zero point energy due to quantum fluctuations is ob-
tained as11

Ezp =
1

2N
�
�k

���k�h� − Ak	 . �8�

For the CAF and NAF phases, it is always negative and
vanishes in the FM or fully polarized �h=hs� phase, where
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the ground state and spin-wave states are exact eigenstates
with a dispersion ��k
Ak. The sublattice couplings which
determine the spin-wave dispersion in the canted state were
derived in Ref. 11 and are given here for completeness. De-
fining

Ak = Sak,

Bk�h� = Sbk sin2�c

2
,

Ck�h� = Sck cos2�c

2
, �9�

we have in the NAF and CAF phases corresponding to wave
vectors Q= �� ,�� and Q= �� ,0�, respectively:

ak = 4�J1 − J2�1 − ̄k�	 �NAF� ,

ck = − bk = 4J1k,

ak = 2�2J2 + J1y	 �CAF� ,

ck = − bk = 2�J1 + 2J2y	x, �10�

where the geometric structure factors are defined by

k =
1

2
�cos kx + cos ky� ,

̄k = cos kx cos ky ,

x = cos kx, y = cos ky . �11�

Due to the symmetry properties Ak+Q=Ak, Bk+Q=−Bk, and
Ck+Q=−Ck, we have the identity �
�k+Q�=���k�. Then,
instead of summing over two spin-wave branches in the
magnetic BZ of NAF or CAF, we may restrict to one mode
only, e.g., �k
�+k, and sum over the whole paramagnetic BZ
in the expression for Ezp and similar ones. Using this con-
vention, the spin-wave branch index � will be omitted in the
following. Using Eqs. �4� and �9�, the spin-wave energies
may be written as

�k�h� = S�ak + ck�1/2�ak + ck cos �c�1/2, �12�

for both NAF and CAF cases with ak and ck given in Eq.
�10�.

C. Magnetization from first-order spin-wave quantum
corrections

The zero-temperature magnetization is given by the field
derivative of the total ground-state energy

m = m0 + mzp = −
�E0�h�

�h
−

�Ezp�h�
�h

,

m = S
h

hs
−

1

2N
�
k

��k�h�
�h

, �13�

where the first term is the linear classical part and the second
one the �negative� correction due to quantum fluctuations
included up to first order in 1 /S. We can write

��k�h�
�h

=
1

�k�h�
2Ck

h
��Ak + Ck� − Bk	

=
2S

hs
ck ak + ck

ak + ck cos �c
�1/2

cos
�c

2
. �14�

This finally leads to a total magnetization, including the first-
order quantum corrections as follows:

m = S
h

hs
�1 −

1

hs

1

N�
k

ck ak + ck

ak + ck cos �c
�1/2� , �15�

where on the right-hand side the classical value of �c given
by cos��c /2�=h /hs has to be used. Because hs=2S�a� +a��,
the second term in Eq. �15� is formally a 1 /S correction to
the linear classical term m0=S�h /hs�.

Explicitly, using Eqs. �10� and �11�, we have for the NAF
case a magnetization depending on field strength and frustra-
tion angle according to

NAF: m = S
h

hs
�1 −

1

2SN

��
k

k 1 + k − j�1 − ̄k�
1 + k cos �c − j�1 − ̄k��1/2� ,

�16�

where we used j=tan �=J2 /J1. In this expression, the �1 /S�
character of the quantum correction becomes manifest. For
the simple NAF with j=0, we reproduce the result first given
in Ref. 13.

A similar but more complicated expression may be given
for the CAF phase. Defining �k= �1 /2��cos kx−cos ky� in ad-
dition to Eq. �11�, we obtain

CAF: m = S
h

hs
�1 −

1

2SN� j + 1
2��k

�1

2
�k + �k� + j̄k�

� j�1 + ̄k� + k

j�1 + ̄k cos �c� + k cos2 �c

2 − �k sin2 �c

2

�1/2� .

�17�

Note that the special CAF case with J1=0 �j=�� is equiva-
lent to the simple NAF case J2=0 �j=0� in Eq. �16�. This
may be seen by applying a k-coordinate rotation by � /4 in
Eq. �17�.

Naturally, the above expressions should be primarily valid
deep inside the NAF and CAF regions where the staggered
moments are large. Close to the boundaries, quantum fluc-
tuations grow and destroy the magnetic order. Then correc-
tions to m�h� starting from the ordered state and expanded in
orders of 1 /S are no longer appropriate.
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The combined analytical spin-wave and numerical Lanc-
zos results for the magnetization are shown in Fig. 2. One
may indeed see that the agreement of both is good deep
inside the NAF �� /�=−0.21,−0.17� and CAF �� /�=0.41�
sectors. On the other hand, close to the classical phase
boundaries �� /�=0.17,0.75�, discrepancies appear. For the
former case, our and previous22 Lanczos results indicate the
appearance of the one-half magnetization plateau, with m

= 1
2msat close to h /hs=0.5. It may be seen as a consequence

of a four-spin bound state with Sz
tot=1 /2 on a square

plaquette which is stable for a finite range of fields.22 �Such
a plateau has also been found in the equivalent classical
model at finite temperatures.21� For the latter, the magnetiza-
tion curve becomes very nonlinear due to quantum fluctua-
tions and m�h� becomes negative at low fields �upper full
line�, indicating the breakdown of the 1 /S expansion. This
means that the CAF state becomes unstable and a new �spin
nematic� order parameter will be realized in a finite sector
around � /�=0.85 �J2 /J1�−0.5�. Generally, one may say
that quantum corrections leading to nonlinear magnetization
will be considerably larger on the ferromagnetic �J1�0� side
of the CAF sector. This will be further discussed in Sec. V.

D. First-order quantum corrections to the magnetic
susceptibility

In the spin-wave approximation, the magnetization curve
for the simple AF exhibits a logarithmic singularity of the
slope close to the saturation field hs as shown in Refs. 13 and
23. This should be more easily visible in the high field sus-
ceptibility. Furthermore, for � approaching a classical phase
boundary, the low field susceptibility has to vanish, which
signifies the instability of the order parameter. For these rea-
sons, we found it useful to study the magnetic susceptibility
��h ,��=�m�h ,�� /�h as a function of the frustration angle �
in addition to the magnetization. From Eq. �13�, we obtain

��h,�� = �0 + �zp =
S

hs
−

1

2N
�

k
 �2�k�h�

�h2 � . �18�

From Eq. �12� and using ��Ak /�h�=0, we arrive at

�2�k�h�
�h2 =  ��k

�h
��1

h
−

1

�k�h� ��k�h�
�h

�� . �19�

Inserting this in Eq. �18� and using Eq. �14� leads to a gen-
eral expression of the normalized susceptibility �n�h�
=hs��h� according to

�n�h,�� = S�1 −
1

S
���n

�a��h,�� − ��n
�b��h,���� , �20�

where the terms �1 /S in brackets are the quantum correc-
tions of �n

zp to the constant classical value �n
0=S. We obtain

from Eqs. �18� and �19�:

��n
�a��h,�� =

S

hs

1

N�
k

ck ak + ck

ak + ck cos �c
�1/2

,

��n
�b��h,�� = 2

S

hs
 h

hs
�2 1

N
�
k

ck
2 �ak + ck�1/2

�ak + ck cos �c�3/2 . �21�

For the NAF case, this may be explicitly evaluated as

��n
�a��h,�� =

1

2N
�
k

k 1 + k − j�1 − ̄k�
1 + k cos �c − j�1 − ̄k�

�1/2

,
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FIG. 2. Magnetization curves � /�B=gm �=m /S� for various
frustration angles in the antiferromagnetic or disordered sectors
with an offset of 0.2 applied. Symbols are obtained from Lanczos
magnetization data for N=16 �squares�, N=20 �diamonds�, and N
=24 �dots, circles� size clusters using the Bonner–Fisher construc-
tion �Ref. 20�. Lines are obtained from first �full� or second �dotted�
order spin-wave calculations of Secs. III C and III F. Angles � /�
=0.75,−0.21 correspond to the possible CAF or NAF values of the
Sr compound. Magnetization curves strongly differ in the extent of
nonlinear deviation from the classical curve, which corresponds to
� /�=−0.5. Furthermore, � /�=0.41,−0.17 are values which are
deeply within the CAF or NAF regions, and overall agreement of
spin-wave and Lanczos calculations is good. It is less so on the
CAF side, where the magnetization changes in steps of �Sz=2,
leading to a larger finite-size scattering. The values � /�
=0.75,0.17 correspond to regions close to or within the nonmag-
netic sectors. Close to the CAF/FM boundary, the first-order spin-
wave results overemphasize the nonlinear behavior and become un-
stable at very low fields. Close to the CAF/NAF boundary, the
numerical data exhibit a plateau at m /S=� /�B=0.5, which would
require a separate analysis. The plateau was first reported in Ref.
21. The inset shows the position of plotted � values in the phase
diagram. Second-order spin-wave results are discussed in Sec. III F.
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��n
�b��h,�� =  h

hs
�2 1

N
�
k

k
2 �1 + k − j�1 − ̄k��1/2

�1 + k cos �c − j�1 − ̄k��3/2 .

�22�

Obviously, only the first part ��n
�a� contributes to the

�1 /S� corrections of the zero-field susceptibility. It may also
be directly obtained by differentiation of m�h� in Eq. �16�.
For the CAF case, similar expressions for ��n

�a,b��h ,�� may
be derived by making analogous substitutions in the integrals
and their prefactors as done in Eqs. �16� and �17�.

The typical field dependence of the susceptibility is
shown in Fig. 3. For � /�=−0.49 close to the NAF/FM
boundary, one nearly obtains the classical constant value �n
=S because, in the FM sector, quantum fluctuations are not
present, they are gradually turned on when J1 becomes posi-
tive, and � moves into the NAF sector. This can be clearly

seen from the various curves in Fig. 3 �left�. For an angle
� /�=0.1, frustration becomes large and quantum fluctua-
tions are close to destroying the NAF order. Accordingly, the
zero-field susceptibility is close to becoming negative where
the spin-wave theory breaks down. One also notes the upturn
in the susceptibility just below the critical field coming from
the logarithmic singularity of the magnetization.13,23 The sin-
gularity becomes more pronounced when the strongly frus-
trated point j=1 /2 is approached.24

E. Quantum corrections of the moment canting angle

The angle �c between canted AF ordered moments has so
far been given in the classical approximation by minimizing
only E0��c ,h�. Its quantum corrections of first order in �1 /S�
may be computed by minimizing the total energy E0��c ,h�
+Ezp��c ,h�, keeping �c also as a variable in the zero point
energy. For the unfrustrated Néel AF, this correction is small;
however, as we shall see in the following, it may be of con-
siderable size close to the classical boundaries of NAF and
CAF phases where frustration effects are large.

The equilibrium condition including quantum corrections
is given by

�E0

��c
+

1

2N
�
k
 ��k

��c
−

�Ak

��c
� = 0. �23�

Now �c is to be treated as a variable present in �k and Ak.
The form of Ak in Eqs. �9� and �10� already has the classical
angle of Eq. �7� substituted. Its general form is Ak=Sak, with

ak = − 4J2�1 − ̄k� − 4J1 cos �c + h cos
�c

2
�24�

for the NAF case. Likewise, for the CAF sector, one obtains

ak = − 2J1�1 − y� − 2�J1 + 2J2�cos �c + h cos
�c

2
. �25�

Evaluating the derivatives of �k and Ak with respect to �c and
solving the equilibrium Eq. �23�, we obtain the canting angle
�c� renormalized by quantum fluctuations:

cos
�c�

2
= cos

�c

2 �1 −
1

hs

1

N

��
k
�ak

�1��ak + ck cos2 �c

2 � + ck�ak + ck�
�ak + ck�1/2�ak + ck cos �c�1/2 − ak

�1��� .

�26�

Here, cos
�c

2 =h /hs is the classical canting angle and ak
�1�=

−�hs /2S� is the coefficient of the second term in Eqs. �24�
and �25�. Again, because of hs=2S�a� +a��, the term �1 /hs
in Eq. �26� has to be considered as a �1 /S� correction to the
canting angle. Therefore, in the sum on the right-hand side,
the classical values for �c have to be used, which again lead
to the intrasublattice coupling ak as given by Eq. �10�.

The general solution in Eq. �26� is valid for both AF
phases. In the NAF case, it leads to the explicit result
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FIG. 3. �a� Susceptibility as a function of field for various � /�
values in the NAF sector �� values correspond to curve sequence
for h=0.� Note the divergence close to hs for � approaching the
sector of the stacked dimer phase. In this regime, the zero-field
susceptibility tends to zero, indicating the breakdown of the �1 /S�
approximation. �b� Zero-field normalized susceptibility �n in the
��0 part of the NAF sector. At �=0 �see also �a�	, the first-order
�n �dashed line� obtained from Eqs. �20� and �22� is already reduced
to half the classical value �equal to S�. It decreases further with
increasing � and then becomes negative, indicating the instability
of the NAF state. Inclusion of second-order contributions in �1 /S�
stabilizes the positive value �full line, symbols�, but they diverge on
approaching the CAF/NAF boundary around � /��0.15.
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cos
�c�

2
= cos

�c

2 �1 −
1

2SN
�
k
� k

2 + k sin2 �c

2 − 1 + j�1 − ̄k��1 − k�
�1 + k − j�1 − ̄k��1/2�1 + k cos �c − j�1 − ̄k��1/2 + 1�� . �27�

For the simple AF �j=0�, one recovers the expression given
in Ref. 13. A similar explicit expression for the CAF case
may be derived, but it is too unwieldy to be given here. For

the numerical calculation of cos
�c�
2 , Eq. �26� may be used as

well.
The field dependence of renormalized moment canting

given by cos
�c�
2 in comparison with the normalized magneti-

zation m�h� /S is shown in Fig. 4. Generally, the quantum
corrections to the canting angle are quite small deep inside
the AF sectors. As for the magnetization, they become larger
when approaching a phase boundary. Interestingly, however,
they may have different signs for the former �left panel�,
while they must always be negative for the latter �right

panel�. The positive correction to cos
�c�
2 appears in the vicin-

ity of the NAF/CAF boundary.
The quantum corrections to magnetization and canting

angle may be used to obtain the correction to the moment
size. Classically, we have S=m0 /cos

�c

2 . If we use a similar
definition including the quantum corrections, we have �S�
=m /cos

�c�
2 for the renormalized moment. The change of mo-

ment size defined by �S=S− �S� is then given by �S=S

− �m /cos
�c�
2 �. Note, however, that in this relation the quantum

correction to S formally contains effects of arbitrary order in

�1 /S� even if m and cos
�c�
2 are only corrected in order �1 /S�.

Close to the nonmagnetic regions, when m approaches zero,
�S /S becomes unity, i.e., the staggered moment is destroyed
by the quantum fluctuations.

F. Second-order spin-wave results for the magnetization and
susceptibility

The linear spin wave theory used in the previous sections
includes the leading contribution to the ground-state energy
�O�S� �see Eq. �3�	. The next order contributions to Eg.s.
come from �i� the canting angle renormalization, �ii� a
Hartree–Fock decoupling of the quartic terms, and �iii� the
cubic terms. The detailed derivation in the case of nonfrus-
trated square-lattice AF is given in Ref. 13. Here, we present
only the final result for the Néel phase of the J1-J2 model.
The ground-state energy per site in second-order spin-wave
theory consists of the classical part E0, first-order corrections
�zero point fluctuations� Ezp, and second order in 1 /S correc-
tions. In total, it may be written as

Eg.s./N = − 2�J1 − J2�S�S + 1� −
h2

16J1
+

1

2N
�
k

�k

− 2J1��n − �1�2 + n1�n1 − ��	

+ 2J2��n − n2�2 + �2��2 − ��	

+ 4J1 cos2��c/2��n −
1

2
����1 + n1� − 2�1n1�

− J1 sin2 �c
1

3N2�
k,q

F�k,q�2

�k + �q + �k+q−Q
. �28�

Here, the first line is equal to the sum of E0+Ezp, while the
rest constitutes the second order in 1 /S spin-wave contribu-
tion. In this term, the six constants are given by two-
dimensional momentum integrals as follows:

n =
1

N
�
k

Ak + Ck − �k

2�k
,

n1�2� =
1

N
�
k

k�̄k�
Ak + Ck

2�k
,

� =
1

N
�
k

Bk

2�k
, �1�2� =

1

N
�
k

k�̄k�
Bk

2�k
, �29�

while the expression for the cubic vertex F�k ,q� is given by
Eq. �25� in Ref. 13. The magnetization curve is obtained by
the numerical differentiation m=−�Eg.s.�h� /�h.

The effect of the second-order contributions in the mag-
netization may be seen in Fig. 5 and also in Fig. 2 in the
comparison to the ED Lanczos results. In general, the
second-order spin-wave corrections to the first order in �1 /S�
results are positive for small fields and negative for large
fields �Fig. 5�. As long as � is within the stable antiferro-
magnetic sectors, the second-order corrections are quite
small. For example, when � /�=−0.21,−0.17,0.41, the first-
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FIG. 4. Comparison of �1 /S� quantum corrected canting angle
�c� �left� and magnetization �right� for two values in the NAF sector.
It is seen that first-order quantum corrections always reduce the
magnetization with respect to the classical value according to Eq.
�15�. For cos��c� /2�, however, the corrections may have both signs.
They are small and negative for � deep in the NAF sector, while
they are positive closer to the NAF/CAF boundary.
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and second-order results are almost indistinguishable to the
eye and agree with Lanczos results �Fig. 2�. When � ap-
proaches the strongly frustrated phase boundaries, the first-
order approximation breaks down as witnessed by the mag-
netization becoming negative �Figs. 2 and 5�. The second-
order corrections remedy this situation. However, close to
the boundaries, they become very large, leading to a very
anomalous low field second-order magnetization which de-
viates strongly from the Lanczos results �Fig. 2�. Since the
deviations between the first- and second-order curves are
strongly enhanced close to the classical phase boundaries, it
is clear that spin-wave expansion no longer converges. In
Fig. 2, this is obvious for � /�=0.17 at the NAF/CAF
boundary and even more so for � /�=0.75, already well in
advance of the CAF/FM boundary at � /�=0.85. In fact, the
first-order result �full line� agrees better with the Lanczos
results �full symbols� plotted for comparison than does the
second-order curve �dotted line�.

Finally, from Eq. �29� the second order in �1 /S� correc-
tions to the zero-field susceptibility may be calculated in
addition to the first-order expression given in Eqs. �20� and
�22�. The comparison of first- and second-order results for
the NAF case is given in Fig. 3 �right panel�. Although the
second-order contributions repair the negative instability of
the first-order susceptibility at ��0.11�, the second-order
result itself diverges when one moves even closer to the clas-
sical phase boundary at ��0.15�.

IV. EFFECT OF INTERLAYER EXCHANGE COUPLING

In real magnetic systems, other interactions may play a
certain role besides the in-plane Heisenberg exchange. These
include various anisotropies as well as a three-dimensional
coupling. We shall consider modifications of the above for-
mulas produced by interlayer exchange coupling as

H� = J��
�ij�z

Si · S j �30�

for nearest-neighbor spins in the direction perpendicular to
the layers. �Note the different convention for field direction
in Sec. III B�. Here, we assume the simple stacking of the
layers. The obtained results can be easily extended to other
cases as well.

For ferromagnetic exchange J��0, the saturation field
for NAF is still given by hs=8SJ1, while for antiferromag-

netic exchange J��0, it is given by hs=8SJ1�1+ 1
2 j��. Here,

we define j�=J� /J1. The first-order spin-wave result for the
magnetization in the NAF case which includes the interpla-
nar coupling J� is given by

J� � 0: m = S
h

hs
�1 −

1

2SN
�
k

k 1 + k − j�1 − ̄k� + 1
2 �j���1 − z�

1 + k cos �c − j�1 − ̄k� + 1
2 �j���1 − z�

�1/2� ,

J� � 0: m = S
h

hs
�1 −

1

2SN
�
k

�k

1 + 1
2 j�

 1 + 1
2 j� + �k − j�1 − ̄k�

1 + 1
2 j� + �k cos �c − j�1 − ̄k��

1/2� . �31�

Here, �k=k+ 1
2 j� cos kz is the three-dimensional �3D� structure factor and summation is now extended over a 3D Brillouin

zone.
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FIG. 5. Compiled comparison of first �full lines� and second
�dotted lines� order in �1 /S� spin-wave results for the magnetization
for various frustration angles indicated in the inset. An offset of 0.2
has been applied. Curves in increasing order correspond to � values
in the counterclockwise direction. Well inside the antiferromagnetic
regimes �� /�=0.093,0.25,0.65�, the first- and second-order results
show little difference. Close to the classical phase boundaries
�� /�=0.135,0.16,0.75�, the first-order results lead to unstable
�negative� low field magnetization. The instability region below
� /�=0.85 �CAF/FM� is much larger than around � /�=0.15
�NAF/CAF�. The second-order results are always positive, but show
very anomalous low field magnetization contrary to the Lanczos
results in Fig. 2. Note that the second-order corrections in �1 /S� to
the first-order curves are positive for low fields and negative for
large fields.
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In the case of CAF order, the first-order spin-wave theory for a ferromagnetic interlayer exchange J��0 leads to hs
=4SJ1�1+2j�, and for an antiferromagnetic case J��0, the saturation field is given by hs=4SJ1�1+2j+4j��. The first-order
spin-wave result for the magnetization in the 3D CAF case is then obtained as

J� � 0: m = S
h

hs
�1 −

1

2SN
�
k

j̄k + 1
2x

j + 1
2

 j�1 + ̄k� + k + 1
2 �j���1 − z�

j�1 + ̄k cos �c� + 1
2 �y + cos �cx� + 1

2 �j���1 − z�
�1/2� ,

J� � 0: m = S
h

hs
�1 −

1

2SN
�
k

j̄k + 1
2x + 1

2 j�z

j + 1
2 �1 + j��  j�1 + ̄k� + k + 1

2 j��1 + z�

j�1 + ̄k cos �c� + 1
2 �y + cos �cx� + 1

2 j��1 + z cos �c�
�1/2� . �32�

Here, we used the convention i=cos ki �i=x ,y ,z�.
We have verified that for well-ordered NAF and CAF

phases, the effect of interlayer coupling is hardly visible up
to �J���0.3�J1,2�. This means that the application of our first-
order spin-wave results to real compounds does not critically
depend on a small interlayer coupling J� as long as the quan-
tum antiferromagnet is in a well-ordered phase. Closer to the
phase boundaries, J� has the effect of stabilizing the ordered
phases, especially for J��0.

V. DISCUSSION AND CONCLUSION

In this work, we have explored the quantum corrections to
the magnetization, the uniform susceptibility, and the canting
angle in the first- and second-order spin-wave approxima-
tions and by using an exact diagonalization of finite clusters.
The deviations from classical behavior were found to be pro-
nounced close to the strongly frustrated regions where the
classical phases meet. Indeed, we have shown that linear
spin-wave theory breaks down in these regions and the
second-order corrections do not fundamentally change this
observation. The latter are small well within the AF regions
and have a positive sign for small fields and a negative sign
for large fields. Although they prevent the instability of the
linear spin-wave theory for small fields, they become very
anomalous close to the boundaries and one cannot expect
that the 1 /S expansion converges in the nonmagnetic region.
This is intuitively clear since the spin-wave expansion in the
region of the classical boundaries starts from the wrong, i.e.,
magnetically ordered, ground state.

A striking feature of these results is that the deviations
from classical behavior in the magnetization curve m�h� and
the breakdown of the spin-wave expansion are most pro-
nounced on the ferromagnetic side �J1�0�, as illustrated in
Figs. 2 and 5. One can understand this by considering the
asymptotic form of the first-order corrections to the stag-
gered moments �S and the uniform susceptibility �� in the
CAF phase as j→ 
1 /2:

�S � �
k

1

�kx
2 + ��j�ky

2
,

�� �
1

j + 1
2
�
k

1

�kx
2 + ��j�ky

2
. �33�

Here, �j= j

1
2 is the deviation from one of the two strongly

frustrated points. For the CAF/NAF boundary, the diverging

corrections are the same for the sublattice magnetization and
the susceptibility �S ,��� ln��j�. For the CAF/FM frustration
point, the susceptibility correction acquires an additional di-
verging prefactor ����ln��j�� / ��j�, which indicates that a
long-range magnetic order is destabilized in a much wider
window of J2 /J1 for this sign of J1.

This is in accordance with the ED Lanczos results where
a tendency to bound state formation of spin waves, as indi-
cated by the �Sz=2 steps in the magnetization of finite clus-
ters, is observed.11 This is evidence that around ��0.85� or
J2 /J1�−0.5 the ground state will be of the spin-nematic type
as proposed in Ref. 12. It may be viewed as a quantum
gapless phase, with a Goldstone mode describing the collec-
tive long-range excitations of a nonlocal quadrupolar order
parameter. A second-order transition between the CAF phase
and this spin nematic is permitted by the symmetry of the
order parameter, and the smooth evolution of ED spectra
across the transition suggests that a second order does, in
fact, occur. The pronounced quantum fluctuations seen in
spin-wave theory lend further support to this idea.

This can be most clearly seen in Fig. 6 �left panel�, where
the magnetization is plotted as a function of the frustration
angle �. The decrease in magnetization from the classical
value m /S=h /hs at around half-saturation �h /hs=0.58� char-
acterizes the strength of quantum fluctuations. Their effect
increases from zero at FM/NAF boundary to a maximum at
NAF/CAF boundary, where a discontinuous jump in the
magnetization occurs. For � /��0.5 �the CAF regime with
J2�0�, the reduction of m /S due to quantum fluctuations
rapidly becomes large and the expansion in 1 /S breaks
down. This is also seen in Fig. 5.

The exact numerical results �circles� obtained from the
Bonner–Fisher plots �hence, the steps� as in Fig. 1 also show
the strong reduction of the magnetization close to the classi-
cal CAF/FM boundary. This is a signature of the true spin-
nematic quantum ground state which does not break time
reversal symmetry. Therefore, it has no first-order �linear�
coupling to the magnetic field, resulting in a small magneti-
zation. The right panel of Fig. 6 shows the comparison of
high field susceptibility at h=hs

−��� from first-order spin-
wave theory �full line� at T=0 with the ED Lanczos results at
small but finite T, plotted as a function of the frustration
angle �. The susceptibility in both cases is normalized to the
pure NAF case ��=0�. The overall agreement of � depen-
dence is quite good because, due to high fields, the effect of
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quantum fluctuations is suppressed. Again, the deviations are
strongest close to the classical CAF/FM boundary, where the
saturation field approaches zero and the spin-wave approxi-
mation breaks down.

The deviations from classical results and the breakdown
of the spin-wave approximation are much less severe on the
CAF/NAF phase boundary at the AF side �J1�0�. The mag-
netization behaves significantly less singular in this region.
As mentioned before, a discontinuous jump in m��� at �
�0.15� occurs at around half-saturation �Fig. 6�. Then the

quantum phase transition to the presumably stacked spin
dimer ground state may be expected to be a first-order tran-
sition. Therefore, the magnetic and nonmagnetic phases on
both sides of the boundary will correspond to stable local
minima of the free energy and fluctuations will not be very
pronounced, leading to a less singular magnetization behav-
ior. The first-order nature of transition between CAF and a
nonmagnetic columnar-dimer state was noticed in an earlier
numerical work,16 while for the boundary with the NAF, a
first-order scenario was only recently put forward.18

Finally, we comment on experimental data for the high
field magnetization of J1-J2 compounds. There are no pub-
lished data for those systems mentioned in the Introduction.
However, recently, a new compound �CuBr�LaNb2O7, with a
perovskite/metal halide intergrowth structure, was
synthesized.25 This is a spin-1/2 magnetic insulator, and is
reported to exhibit quasi-2D magnetic behavior arising from
the CuBr–square-lattice planes. It shows CAF order at a rela-
tively large TN=32 K.

It has been suggested that the magnetism of
�CuBr�LaNb2O7 can be described by the square-lattice J1-J2
model with a frustration angle �=0.73� �J2 /J1=−1.1�,
which puts this compound closer to the strongly frustrated
region of the spin-nematic phase than any other compound
reported so far. Our spin-wave calculations predict a pro-
nounced nonlinear magnetization for this parameter set, par-
ticularly at low fields. However, the experimental results in
Ref. 25 show only a modest curvature at high fields. We,
therefore, conclude that, while these materials likely do pos-
sess competing FM and AF interactions, they probably can-
not be described by a simple square-lattice J1-J2 model.

Various further extensions of the model �besides inter-
layer coupling� are possible: inclusion of in-plane exchange
anisotropy to describe orthorhombic distortions, asymmetric
exchange, and four-spin ring exchange. Each extension re-
quires a separate analysis of possible ordered states and their
corresponding spin-wave excitations.

In conclusion, it is abundantly clear that classically disor-
dered phases of the square-lattice J1-J2 model need and de-
serve an analysis which goes beyond the spin-wave theory
presented here. This is further motivated by the fact that
some of the known J1-J2 vanadium compounds are rather
close to the spin-nematic sector of the phase diagram. For
further progress to be made in understanding the hidden or-
der phases, an approximative treatment of the broken order
parameter and its low lying excitations is necessary. Since
both the dimer and nematic phases are bond centered, the
bond-operator method might be a useful choice.
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FIG. 6. �a� Variation of the moment � /�B=gm as a function of
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Susceptibility ���� /���=0� for h=hs

−��� normalized to the simple
NAF value. Circles are ED Lanczos results �kBT /Jc=0.2� and full
lines are T=0 spin-wave results according to Eq. �20�.
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